Как формулируется закон сохранения полной энергии. Механическая энергия. Закон сохранения энергии

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Тема: Механические колебания и волны. Звук

Урок 32. Закон сохранения механической энергии

Ерюткин Евгений Сергеевич

Темой урока является один из фундаментальных законов природы – .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной энергией называют сумму потенциальной и кинетической энергий тела. Давайте вспомним, что называют замкнутой системой. Это такая система, в которой находится строго определенное количество взаимодействующих между собой тел, но никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел взаимодействующих друг с другом посредством сил тяготения или сил упругости остается неизменной при любом движении этих тел.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно Земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к Земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую. То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии: .

Представьте себе, что тело в некоторой системе отсчета обладает кинетической энергией и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой. Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит? В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Давайте посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу мы можем с помощью формулы, которая известна из 7 класса: А = F.* S.

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 1 «О падении тела с некоторой высоты»

Задача 1

Тело находится на высоте 5 м от поверхности земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Дано: Решение :

Н = 5 м 1. ЕП = m* g*.H

V0 = 0 ; m * g * H =

_______ V2 = 2gH

VK - ? Ответ:

Рассмотрим закон сохранения энергии.

Рис. 1. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: ЕП = m *g * H. Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую.

Согласно закону сохранения энергии можем записать: m * g * H = . Масса тела сокращается. Преобразуя указанное уравнение, получаем: V2 = 2gH .

Окончательный ответ будет: . Если подставить все значение, то получим: .

Дополнительная задача 2

Тело свободно падает с высоты Н. Определите, на какой высоте кинетическая энергия равна трети потенциальной.

Дано: Решение :

Н ЕП = m . g . H; ;

M.g.h = m.g.h + m.g.h

h - ? Ответ: h = H.

Рис. 2. К задаче 2

Когда тело находится на высоте Н, оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: ЕП = m * g * H. Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид: . Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии у нас полная энергия сохраняется. Эта энергия ЕП = m * g * H остается величиной постоянной. Для точки h мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: m.g.Н = m.g.h + m.g.h.

Обратите внимание, масса сокращается, ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет h = H.

Ответ: h= 0,75H

Дополнительная задача 3

Два тела – брусок массой m1 и пластилиновый шарик массой m2 – движутся навстречу друг другу с одинаковыми скоростями. После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какое количество энергии превратилось во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика.

Дано: Решение :

m1 = 3. m2 m1.V1- m2.V2= (m1+m2).U; 3.m2V- m2.V= 4 m2.U2.V=4.U; .

Это означает, что скорость бруска и пластилинового шарика вместе будет в 2 раза меньше, чем скорость до соударения.

Следующий шаг – это .

.

В данном случае полная энергия – это сумма кинетических энергий двух тел. Тел, которые еще не соприкоснулись, не ударились. Что произошло потом, после соударения? Посмотрите на следующую запись: .

В левой части мы оставляем полную энергию, а в правой части мы должны записать кинетическую энергию тел после взаимодействия и учесть, что часть механической энергии превратилась в тепло Q .

Таким образом, имеем: . В итоге получаем ответ .

Обратите внимание: в результате такого взаимодействия большая часть энергии превращается в тепло, т.е. переходит во внутреннюю энергию.

Список дополнительной литературы:

А так ли хорошо знакомы вам законы сохранения? // Квант. - 1987. - № 5. - С. 32-33.
Городецкий Е.Е. Закон сохранения энергии // Квант. - 1988. - № 5. - С. 45-47.
Соловейчик И.А. Физика. Механика. Пособие для абитуриентов и старшеклассников. – СПб.: Агенство ИГРЕК, 1995. – С. 119-145.
Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – C. 309-347.

Закон сохранения и превращение энергии является одним из важнейших постулатов физики. Рассмотрим историю его появления, а также основные области применения.

Страницы истории

Для начала выясним, кто открыл закон сохранения и превращения энергии. В 1841 году английским физиком Джоулем и русским ученым Ленцем параллельно были проведены эксперименты, в результате которых ученым удалось на практике выяснить связь между механической работой и теплотой.

Многочисленные исследования, проводимые физиками в разных уголках нашей планеты, предопределили открытие закона сохранения и превращения энергии. В середине девятнадцатого века немецким ученым Майером была дана его формулировка. Ученый попробовал обобщить всю информацию об электричестве, механическом движении, магнетизме, физиологии человека, существовавшую в тот промежуток времени.

Примерно в этот же период аналогичные мысли были высказаны учеными в Дании, Англии, Германии.

Эксперименты с теплотой

Несмотря на многообразие идей, касающихся теплоты, полное представление о ней было дано только русским ученым Михаилом Васильевичем Ломоносовым. Современники не поддержали его идеи, считали, что теплота не связана с движением мельчайшим частиц, из которых состоит вещество.

Закон сохранения и превращения механической энергии, предложенный Ломоносовым, был поддержан только после того, как в ходе экспериментов Румфорду удалось доказать наличие движения частиц внутри вещества.

Для получения теплоты физик Дэви пытался плавить лед, осуществлял трение друг о друга двух кусков льда. Он выдвинул гипотезу, согласно которой теплота рассматривалась в качестве колебательного движения частиц материи.

Закон сохранения и превращение энергии по Майеру предполагал неизменность сил, вызывающих появление теплоты. Подобная идея была раскритикована другими учеными, которые напоминали о том, что сила связана со скоростью и массой, следовательно, ее значение не могло оставаться неизменной величиной.

В конце девятнадцатого века Майер обобщил свои идеи в брошюре и попытался разрешить актуальную проблему теплоты. Как использовался в то время закон сохранения и превращения энергии? В механике не было единого мнения относительно способов получения, превращения энергии, поэтому до конца девятнадцатого века этот вопрос оставался открытым.

Особенность закона

Закон сохранения и превращение энергии является одним из фундаментальных, позволяющих при определенных условиях измерять физические величины. Его называют первым началом термодинамики, основным объектом которого является сохранение этой величины в условиях изолированной системы.

Закон сохранения и превращения энергии устанавливает связь между величиной тепловой энергии, которая попадает в зону взаимодействия различных веществ, с тем ее количеством, которое уходит из данной зоны.

Переход одного вида энергии в другой не означает, что она исчезает. Нет, наблюдается лишь ее превращение в иную форму.

При этом наблюдается взаимосвязь: работа - энергия. Закон сохранения и превращения энергии предполагает постоянство этой величины (полное ее количество) при любых процессах, протекающих в Это свидетельствует о том, что в процессе перехода одного вида в другой, соблюдается количественная эквивалентность. Для того чтобы дать количественную характеристику разных видов движения, в физике введена ядерная, химическая, электромагнитная, тепловая энергия.

Современная формулировка

Как читается закон сохранения и превращения энергии в наши дни? Классическая физика предлагает математическую запись данного постулата в виде обобщенного уравнения состояния термодинамической замкнутой системы:

Это уравнение показывает, что полная механическая энергия замкнутой системы определяется в виде суммы кинетической, потенциальной, внутренней энергий.

Закон сохранения и превращения энергии, формула которого была представлена выше, объясняет неизменность этой физической величины в замкнутой системы.

Основным недостатком математической записи является ее актуальность только для замкнутой термодинамической системы.

Незамкнутые системы

Если учитывать принцип приращений, вполне можно распространить закон сохранения энергии и на незамкнутые физические системы. Данный принцип рекомендует записывать математические уравнения, связанные с описанием состояния системы, не в абсолютных показателях, а в их числовых приращениях.

Чтобы в полной мере учитывались все формы энергии, предлагалось добавлять в классическое уравнение идеальной системы сумму приращений энергий, которые вызваны изменениями состояния анализируемой системы под воздействием различных форм поля.

В обобщенном варианте имеет следующий вид:

dW = Σi Ui dqi + Σj Uj dqj

Именно это уравнение считается самым полным в современной физике. Именно оно стало основой закона сохранения и превращения энергии.

Значение

В науке нет исключений из данного закона, он управляет всеми природными явлениями. Именно на основании данного постулата можно выдвигать гипотезы о различных двигателях, включая и опровержения реальности разработки вечного механизма. Его можно применять во всех случаях, когда необходимо объяснять переходы одного вида энергии в другой.

Применение в механике

Как читается закон сохранения и превращения энергии в настоящее время? Его суть заключается в переходе одного вида этой величины в другой, но при этом ее общее значение остается неизменным. Те системы, в которых осуществляются механические процессы, именую консервативными. Такие системы являются идеализированными, то есть, в них не учитываются силы трения, иные виды сопротивлений, вызывающих рассеивание механической энергии.

В консервативной системе протекают только взаимные переходы потенциальной энергии в кинетическую.

Работа сил, которые действуют в подобной системе на тело, не связана с формой пути. Ее величина зависит от конечного и начального положения тела. В качестве примера сил такого рода в физике рассматривают силу тяжести. В консервативной системе величина работы силы на замкнутом участке равна нулю, а закон сохранения энергии будет справедлив в следующем виде: «В консервативной замкнутой системе сумма потенциальной и кинетической энергии тел, которые составляют системы, сохраняется неизменной».

К примеру, в случае свободного падения тела происходит переход потенциальной энергии в кинетическую форму, при этом суммарное значение этих видов не изменяется.

В заключение

Механическую работу можно рассматривать в качестве единственного способа взаимного перехода механического движения в иные формы материи.

Данный закон нашел применение в технике. После выключения двигателя автомобиля, происходит постепенная потеря кинетической энергии, последующая остановка транспортного средства. Исследования показали, что при этом наблюдается выделение определенного количества теплоты, следовательно, трущиеся тела нагреваются, увеличивая свою внутреннюю энергию. В случае трения либо любого сопротивления движению наблюдается переход механической энергии во внутреннюю величину, что свидетельствует о правильности закона.

Его современная формулировка имеет вид: «Энергия изолированной системы не исчезает в никуда, не появляется из ниоткуда. В любых явлениях, существующих внутри системы, наблюдается переход одного вида энергии в иной, передача от одного тела к другому, без количественного изменения».

После открытия данного закона физики не оставляют идею о создании вечного двигателя, в котором бы при замкнутом цикле не происходило изменения величины передаваемого системой тепла окружающему миру, в сравнении с получаемым извне теплом. Такая машина смогла бы стать неисчерпаемым источником тепла, способом решения энергетической проблемы человечества.

Закон сохранения механической энергии связывает между собой разные виды энергии, рассмотрим их подробнее. Выясним и возможности его практического применения.

Особенности физической системы

Математическая формулировка закона сохранения механической энергии связывает кинетическую и потенциальную энергию.

Суть закона заключается в том, что допускается превращение одной формы в иной вид, при этом суммарное значение остается неизменной величиной. В разных разделах физики есть свои формулировки данного закона. Например, в термодинамике выделяют первое начало, в классической механике используют закон сохранения, а в электродинамике расчеты проводят на основе теоремы Пойнтинга.

Фундаментальный смысл

Как определяется механическая энергия? Закон сохранения механической энергии объясняют теоремой Нетер. Она объясняет независимость закона относительно временных рамок, иных основополагающих принципов механики. Ньютоновская теория характеризуется использованием частного случая закона сохранения энергии.

Как можно качественно описать данный закон? Сумма потенциальной и кинетической форм в замкнутой системе сохраняется неизменной.

Если на систему не действуют иные силы, в таком случае не наблюдается ее исчезновения, а также появления. Как осуществлялось обоснование закона сохранения механической энергии? Лабораторная деятельность многих ученых основывалась на изучении перехода кинетической энергии в потенциальный вид. Например, при анализе состояния математического маятника удалось подтвердить неизменность суммарного значения двух видов.

Основы термодинамики

Как рассчитывается механическая энергия? Закон сохранения механической энергии можно применить к первому началу термодинамики. Рассматривается изменение внутренней энергии системы в процессе ее перехода из одного состояния в иное через сумму количества теплоты, передаваемого системе, и работы внешних сил.

Закон сохранения импульса и механической энергии поясняет сложность получения двигателя, работающего постоянно.

Изучение свойств жидкостей

Для гидродинамики идеальных жидкостей было выведено уравнение Бернулли. Суть его в постоянстве жидкости, имеющей однородную плотность.

Как изучалась механическая энергия? Закон сохранения механической энергии был определен экспериментальным путем. Гей-Люссак в начале 19 века пытался найти зависимость между расширением газа и его теплоемкостью. Ему удалось установить неизменность температуры в рассматриваемом процессе.

История появления закона

В 19 веке, после опытов М. Фарадея, была выявлена зависимость между разными видами материи. Именно эти исследования стали основой для появления закона сохранения. Что такое полная механическая энергия? Закон сохранения энергии назван результатом опытов, проведенных французским физиком Сади Карно. Он пытался экспериментальным путем определить зависимость между работой, совершенной над системой, и выделяющимся количеством теплоты.

Именно Карно удалось установить зависимость между теплом и работой, то есть сформулировать первое начало термодинамики на основе закона сохранения. Джеймс Прескотт Джоуль провел серию классических опытов, направленных на количественное определение теплоты, выделяющейся при вращении в электромагнитном поле соленоида с металлическим сердечником.

Ему удалось установить, что количество теплоты, выделяемой в экспериментах, прямо пропорционально значению тока, взятому в квадрате. В последующих экспериментах Джоуль поменял катушку на груз, падающий с некоторой высоты. Ученому удалось установить зависимость между величиной выделяемого тепла и математическим показателем энергии груза.

Роберт Майер предложил интересную гипотезу универсального применения закона сохранения энергии. Занимаясь изучением функционирования систем человека, немецкий врач решил проанализировать то количество теплоты, которое организм выделяет по мере переработки пищи. Его интересовала величина работы, совершаемой в этом случае. Майеру удалось установить связь между теплом, работой, подтверждающую возможность использования закона сохранения энергии для процессов, происходящих внутри организма человека.

Герман Гельмгольц дал первую характеристику потенциальной энергии, основываясь на исследованиях Джоуля и Майера. Он в своих рассуждениях базировался на связи кинетической (живой) энергии с силами напряжения (потенциальной энергии).

Заключение

Закон, поясняющий неизменность суммарного показателя нескольких видов энергии, присущих для рассматриваемой системы, сохраняет свою актуальность и в настоящее время. Открытие закона способствовало развитию физических наук, стало отправной точкой для инновационных процессов, рассматриваемых в науке и технике. Именно изучение закона сохранения механической энергии, лабораторная практика стали детальным обоснованием единства живой природы.

Он указывает на закономерность перехода одной формы в другую, раскрывает глубину внутренних связей между формами материи. Любое явление, происходящее в живой и неживой природе, легко можно объяснить с помощью данного закона. В школьной программе уделяется особое внимание выводу математической записи связи между разными видами движения, рассматриваются основы термодинамической системы. На едином государственном экзамене по физике предлагаются задачи, предполагающие использование данного соотношения.

Процессы, которые происходят в Солнечной системе, связанные с изменением положения тел за определенный промежуток времени, могут быть объяснены с точки зрения основных физических правил. Переход из кинетической в потенциальную форму актуален при изучении механического движения тел. Зная, что суммарный показатель будет постоянным, можно проводить математические вычисления.

Суммарная механическая энергия системы () — это энергия механического энергия и взаимодействия:

где — кинетическая энергия тела; — потенциальная энергия тела.

Закон сохранения энергии создан в результате обобщения эмпирических данных. Идея такого закона принадлежала М.В. Ломоносову, который представил закон сохранения материи и движения. Количественно закон сформулировали немецкий врач Ю. Майер и ученый — естествоиспытатель. Гельмгольц.

Формулировка закона сохранения механической энергии

Если в системе тел действуют исключительно силы, которые являются консервативными, то суммарная механическая энергия остается неизменной во времени. (Консервативными (потенциальными) называют силы, работа которых не зависит: от вида траектории, точки к которой приложены данные силы, закона, который описывает движение этого тела, и определено исключительно начальной и конечной точками траектории движения тела (материальной точки)).

Механические системы, в которых действуют исключительно консервативные силы, называют консервативными системами.

Еще одной формулировкой закона сохранения механической энергии считают следующую:

Для консервативных систем суммарная механическая энергия системы величина неизменная.

Математическая формулировка закона сохранения механической энергии имеет вид:

Значение закона сохранения механической энергии

Данный закон связан со свойством однородности времени. Что означает инвариантность законов физики относительно выбора начала временного отсчета.

В диссипативных системах механическая энергия уменьшается, так как происходит преобразование механической энергии в немеханические ее виды. Такой процесс называют рассеянием (диссипацией) энергии.

В консервативных системах полная механическая энергия постоянна. Происходят переходы кинетической энергии в потенциальную и наоборот. Следовательно, закон сохранения механической энергии отражает не только сохранение энергии количественно, но указывает на качественную сторону взаимного превращения разных форм движения друг в друга.

Закон сохранения и превращения энергии является фундаментальным законом природы. Он выполняется и в макро и микро мире.

Примеры решения задач

ПРИМЕР 1

Задание Тело массы упало с высоты на площадку, прикрепленную к пружине с коэффициентом упругости (рис.1). Каково смещение пружины ()?


Решение За ноль потенциальной энергии примем положение площадки до падения на нее груза. Потенциальная энергия тела, поднятого на высоту ,переходит в потенциальную энергию сжатой пружины. Запишем закон сохранения энергии системы тело — пружина:

Получили квадратное уравнение:

Решая квадратное уравнение получим:

Ответ

ПРИМЕР 2

Задание Объясните, почему говорят о всеобщем характере закона сохранения энергии, но известно, что при наличии неконсервативных сил в системе механическая энергия убывает.
Решение Если сил трения в системе нет, то закон сохранения механической энергии выполняется, то есть полная механическая энергия не изменяется во времени. При действии сил трения, механическая энергия убывает, но при этом увеличивается внутренняя энергия. С развитием физики как науки были обнаружены новые виды энергии (световая энергия, электромагнитная энергия, химическая энергия, ядерная энергия). Было выяснено, что если над телом совершается работа, то она равна приращению суммы всех видов энергии тела. Если тело само совершает работу, над другими телами, то эта работа равна убыли суммарной энергии этого тела. Все виды энергии переходят из одного вида в другой. Причем, при всех переходах суммарная энергия остается неизменной. В этом и состоит всеобщность закона сохранения энергии.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна разности потенциальной энергии:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно:

или . (5.16)

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Сумма E = E k + E p есть полная механическая энергия. Получили закон сохранения полной механической энергии :

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы - закон сохранения и превращения энергии.

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона . Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия - абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.



Понравилась статья? Поделитесь ей
Наверх