Свадебная прическа на длинные темные волосы. Прически на свадьбу для невесты. Свадебные прически с фатой и с диадемой. Фото причесок с челкой. Низко собранная прическа

Клетка — саморегулируемая структурно-функциональная единица тканей и органов. Клеточная теория строения органов и тканей была разработана Шлейденом и Шванном в 1839 г. В дальнейшем с помощью электронной микроскопии и ультрацентрифугирования удалось выяснить строение всех основных органелл животных и растительных клеток (рис. 1).

Рис. 1. Схема строения клетки животных организмов

Главными частями клетки являются цитоплазма и ядро. Каждая клетка окружена очень тонкой мембраной, ограничивающей ее содержимое.

Клеточная мембрана называется плазматической мембраной и характеризуется избирательной проницаемостью. Это свойство позволяет необходимым питательным веществам и химическим элементам проникать внутрь клетки, а излишним продуктам выходить из нее. Плазматическая мембрана состоит из двух слоев липидных молекул с включением в нее специфических белков. Основными липидами мембраны являются фосфолипиды. Они содержат фосфор, полярную головку и два неполярных хвоста из длинноцепочечных жирных кислот. К мембранным липидам относятся холестерин и эфиры холестерина. В соответствии с жидкостно-мозаичной моделью строения, мембраны содержат включения протеиновых и липидных молекул, которые могут перемешаться относительно бислоя. Для каждого типа мембран любой животной клетки характерен свой относительно постоянный липидный состав.

Мембранные белки по структуре подразделяют на два вида: интегральные и периферические. Периферические белки могут удаляться из мембраны без ее разрушения. Имеется четыре типа мембранных белков: транспортные белки, ферменты, рецепторы и структурные белки. Одни мембранные белки обладают ферментативной активностью, другие связывают определенные вещества и способствуют их переносу внутрь клетки. Белки обеспечивают несколько путей передвижения веществ через мембраны: образуют большие поры, состоящие из нескольких белковых субъединиц, которые позволяют перемещаться молекулам воды и ионам между клетками; формируют ионные каналы, специализированные для передвижения ионов некоторых видов через мембрану при определенных условиях. Структурные белки связаны с внутренним липидным слоем и обеспечивают цитоскелет клетки. Цитоскелет придает механическую прочность клеточной оболочке. В различных мембранах на долю белков приходится от 20 до 80% массы. Мембранные белки могут свободно перемещаться в латеральной плоскости.

В мембране присутствуют и углеводы, которые могут ковалентно связываться с липидами или белками. Известно три вида мембранных углеводов: гликолипиды (ганглиозиды), гликопротеиды и протеогликаны. Большинство липидов мембраны находятся в жидком состоянии и обладают определенной текучестью, т.е. способностью перемещаться из одного участка в другой. На внешней стороне мембраны имеются рецепторные участки, связывающие различные гормоны. Другие специфические участки мембраны мог>т распознавать и связывать некоторые чужеродные для данных клеток белки и разнообразные биологически активные соединения.

Внутреннее пространство клетки заполнено цитоплазмой, в которой протекает большинство катализируемых ферментами реакций клеточного метаболизма. Цитоплазма состоит из двух слоев: внутреннего, называемого эндоплазмой, и периферического — эктоплазмы, которая имеет большую вязкость и лишена гранул. В цитоплазме находятся все компоненты клетки или органеллы. Важнейшими из органелл клетки являются — эндоплазматический ретикулум, рибосомы, митохондрии, аппарат Гольджи, лизосомы, микрофиламенты и микротрубочки, пероксисомы.

Эндоплазматический ретикулум представляет собой систему взаимосвязанных каналов и полостей, пронизывающих всю цитоплазму. Он обеспечивает транспорт вешеств из окружающей среды и внутри клеток. Эндоплазматический ретикулум также служит депо для внутриклеточных ионов Са 2+ и служит основным местом синтеза липидов в клетке.

Рибосомы - микроскопические сферические частицы диаметром 10-25 нм. Рибосомы свободно располагаются в цитоплазме или прикрепляются к наружной поверхности мембран эндоплазматической сети и ядерной мембраны. Они взаимодействуют с информационной и транспортной РНК, и в них осуществляется синтез белков. Они синтезируют белки, которые попадают внутрь цистерн или в аппарат Гольджи, и затем выделяются наружу. Рибосомы, свободно располагающиеся в цитоплазме, синтезируют белок для использования самой клеткой, а рибосомы, связанные с эндоплазматическим ретикулумом, производят белок, который выводится из клетки. В рибосомах синтезируются различные функциональные белки: белки-переносчики, ферменты, рецепторы, белки цитоскелета.

Аппарат Гольджи образован системой канальцев, цистерн и пузырьков. Он связан с эндоплазматическим ретикулумом, и поступившие сюда биологически активные вещества хранятся в уплотненном виде в секреторных пузырьках. Последние постоянно отделяются от аппарата Гольджи, транспортируются к клеточной мембране и сливаются с ней, а содержащиеся в пузырьках вещества выводятся из клетки в процессе экзоцитоза.

Лизосомы - окруженные мембраной частицы размером 0,25-0,8 мкм. Они содержат многочисленные ферменты, участвующие в расщеплении белков, полисахаридов, жиров, нуклеиновых кислот, бактерий и клеток.

Пероксисомы сформированы из гладкого эндоплазматического ретикулума, напоминают лизосомы и содержат ферменты, катализирующие разложение пероксида водорода, который расщепляется под влиянием пероксидаз и каталазы.

Митохондрии содержат наружную и внутреннюю мембраны и являются «энергетической станцией» клетки. Митохондрии представляют собой округлые или удлиненные образования с двойной мембраной. Внутренняя мембрана формирует выступающие внутрь митохондрии складки — кристы. В них происходит синтез АТФ, осуществляется окисление субстратов цикла Кребса и множество биохимических реакций. Образованные в митохондриях молекулы АТФ диффундируют во все части клетки. В митохондриях содержится небольшое количество ДНК, РНК, рибосомы, и с их участием происходит обновление и синтез новых митохондрий.

Микрофиламенты представляют собой тонкие белковые нити, состоящие из миозина и актина, и образуют сократительный аппарат клетки. Микрофиламенты участвуют в образовании складок или выпячиваний клеточной мембраны, а также при перемещении различных структур внутри клеток.

Микротрубочки составляют основу цитоскелета и обеспечивают его прочность. Цитоскелет придает клеткам характерные внешний вид и форму, служит местом прикрепления внутриклеточных органелл и различных телец. В нервных клетках пучки микротрубочек участвуют в транспорте веществ из тела клетки к концам аксонов. При их участии осуществляется функционирование митотического веретена во время деления клеток. Они играют роль двигательных элементов в ворсинках и жгутиках у эукариот.

Ядро является основной структурой клетки, участвует в передаче наследственных признаков и в синтезе белков. Ядро окружено ядерной мембраной, содержащей множество ядерных пор, через которые происходит обмен различными веществами между ядром и цитоплазмой. Внутри него находится ядрышко. Установлена важная роль ядрышка в синтезе рибосомной РНК и белков-гистонов. В остальных частях ядра содержится хроматин, состоящий из ДНК, РНК и ряда специфических белков.

Функции клеточной мембраны

В регуляции внутриклеточного и межклеточного обмена важнейшую роль играют клеточные мембраны. Они обладают избирательной проницаемостью. Их специфическое строение позволяет обеспечивать барьерную, транспортную и регуляторную функции.

Барьерная функция проявляется в ограничении проникновения через мембрану растворенных в воде соединений. Мембрана непроницаема для крупных белковых молекул и органических анионов.

Регуляторная функция мембраны состоит в регуляции внутриклеточного метаболизма в ответ на химические, биологические и механические воздействия. Различные воздействия воспринимаются специальными мембранными рецепторами с последующим изменением активности ферментов.

Транспортная функция через биологические мембраны может осуществляться пассивно (диффузия, фильтрация, осмос) или с помощью активного транспорта.

Диффузия - движение газа или растворимого вещества по концентрационному и электрохимическому градиенту. Скорость диффузии зависит от проницаемости клеточной мембраны, а также градиента концентрации для незаряженных частиц, электрического и концентрационного градиентов для заряженных частиц. Простая диффузия происходит через липидный бислой или через каналы. Заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные — химическому градиенту. Например, простой диффузией через липидный слой мембраны проникают кислород, стероидные гормоны, мочевина, спирт и т.д. Через каналы перемещаются различные ионы и частицы. Ионные каналы образованы белками и подразделяются на управляемые и неуправляемые каналы. В зависимости от селективности различают ионоселективные канаты, пропускающие только один ион, и каналы, не обладающие селективностью. Каналы имеют устье и селективный фильтр, а управляемые каналы — и воротный механизм.

Облегченная диффузия - процесс, при котором вещества переносятся через мембрану с помощью специальных мембранных белков- переносчиков. Таким путем в клетку проникают аминокислоты и моносахара. Этот вид транспорта происходит очень быстро.

Осмос - движения воды через мембрану из раствора с более низким в раствор с более высоким осмотическим давлением.

Активный транспорт - перенос веществ против градиента концентрации с помощью транспортных АТФаз (ионных насосов). Этот перенос происходит с затратой энергии.

В большей мере изучены Na + /K + -, Са 2+ - и Н + -насосы. Насосы располагаются на клеточных мембранах.

Разновидностью активного транспорта являются эндоцитоз и экзоцитоз. С помощью этих механизмов транспортируются более крупные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут переноситься по каналам. Этот транспорт более распространен в эпителиальных клетках кишечника, почечных канальцев, эндотелии сосудов.

При эндоцитозе клеточные мембраны образуют впячивания внутрь клетки, которые отшнуровываясь, превращаются в пузырьки. При экзоцитозе пузырьки с содержимым переносятся к клеточной мембране и сливаются с ней, а содержимое пузырьков выделяется во внеклеточную среду.

Строение и функции клеточной мембраны

Для понимания процессов, обеспечивающих существование электрических потенциалов в живых клетках, прежде всего нужно представлять строение клеточной мембраны и ее свойства.

В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная С. Сингером и Г. Николсоном в 1972 г. Основу мембраны составляет двойной слой фосфолипидов (бислой), гидрофобные фрагменты молекулы которого погружены в толщу мембраны, а полярные гидрофильные группы ориентированы наружу, т.е. в окружающую водную среду (рис. 2).

Мембранные белки локализованы на поверхности мембраны или могут быть внедрены на различную глубину в гидрофобную зону. Некоторые белки пронизывают мембрану насквозь, и различные гидрофильные группы одного и того же белка обнаруживаются по обе стороны клеточной мембраны. Белки, обнаруженные в плазматической мембране, играют очень важную роль: они участвуют в образовании ионных каналов, играют роль мембранных насосов и переносчиков различных веществ, а также могут выполнять рецептор- ную функцию.

Основные функции клеточной мембраны: барьерная, транспортная, регуляторная, каталитическая.

Барьерная функция заключается в ограничении диффузии через мембрану растворимых в воде соединений, что необходимо для защиты клеток от чужеродных, токсических веществ и сохранения внутри клеток относительного постоянного содержания различных веществ. Так, клеточная мембрана может замедлить диффузию различных веществ в 100 000-10 000 000 раз.

Рис. 2. Трехмерная схема жидкостно-мозаичной модели мембраны Сингера-Николсона

Изображены глобулярные интегральные белки, погруженные в липидный бислой. Часть белков является ионными каналами, другие (гликопротеины) содержат олигосахаридные боковые цепи, участвующие в узнавании клетками друг друга и в межклеточной ткани. Молекулы холестерола вплотную примыкают к фосфолипидным головкам и фиксируют прилегающие участки «хвостов». Внутренние участки хвостов молекулы фосфолипидов не ограничены в своем движении и ответственны за текучесть мембраны (Bretscher, 1985)

В мембране располагаются каналы, через которые проникают ионы. Каналы бывают потенциал зависимыми и потен циалнезависимыми. Потенциалзависимые каналы открываются при изменении разности потенциалов, а потенциалнезависимые (гормонрегулируемые) открываются при взаимодействии рецепторов с веществами. Каналы могут быть открыты или закрыты благодаря воротам. В мембрану встроены два вида ворот: активационные (в глубине канала) и инактивационные (на поверхности канала). Ворота могут находиться в одном из трех состояний:

  • открытое состояние (открыты оба вида ворот);
  • закрытое состояние (закрыты активационные ворота);
  • инактивационное состояние (закрыты инактивационные ворота).

Другой характерной особенностью мембран является способность осуществлять избирательный перенос неорганических ионов, питательных веществ, а также различных продуктов обмена. Различают системы пассивного и активного переноса (транспорта) веществ. Пассивный транспорт осуществляется через ионные каналы с помощью или без помощи белков-переносчиков, а его движущей силой является разность электрохимических потенциалов ионов между внутри- и внеклеточным пространством. Избирательность ионных каналов определяется его геометрическими параметрами и химической природой групп, выстилающих стенки канала и его устье.

В настоящее время наиболее хорошо изучены каналы, обладающие избирательной проницаемостью для ионов Na + , К+ , Са 2+ а также для воды (так называемые аквапорины). Диаметр ионных каналов, по оценкам разных исследований, составляет 0,5-0,7 нм. Пропускная способность каналов может изменяться, через один ионный канал может проходить 10 7 - 10 8 ионов в секунду.

Активный транспорт происходит с затратой энергии и осуществляется так называемыми ионными насосами. Ионные насосы — это молекулярные белковые структуры, встроенные в мембрану и осуществляющие перенос ионов в сторону более высокого электрохимического потенциала.

Работа насосов осуществляется за счет энергии гидролиза АТФ. В настоящее время хорошо изучены Na+/K+ — АТФаза, Са 2+ — АТФаза, Н + — АТФаза, Н + /К + — АТФаза, Mg 2+ — АТФаза, которые обеспечивают перемещение соответственно ионов Na + , К + , Са 2+ , Н+, Mg 2+ изолированно или сопряжено (Na+ и К+; Н+ и К+). Молекулярный механизм активного транспорта до конца не выяснен.

Клеточная мембрана — молекулярная структура, которая состоит из липидов и белков. Главные её свойства и функции:

  • отделение содержимого любой клетки от внешней среды, гарантируя её целостность;
  • управление и налаживание обменом между средой и клеткой;
  • внутриклеточные мембраны разбивают клетку на специальные отсеки: органеллы или компартменты.

Слово «мембрана» на латыни означает «пленка». Если говорить о клеточной мембране, то это совокупность двух пленок, которые обладают различными свойствами.

Биологическая мембрана включает в себя три вида белков:

  1. Периферические – расположены на поверхности пленки;
  2. Интегральные – целиком пронизывают мембрану;
  3. Полуинтегральные – одним концом проникают внутрь билипидного слоя.

Какие функции выполняет клеточная мембрана

1. Клеточная стенка — прочная оболочка клетки, которая находится снаружи от цитоплазматической мембраны. Она выполняет защитные, транспортные и структурные функции. Присутствует у многих растений, бактерий, грибов и архей.

2. Обеспечивает барьерную функцию, то есть избирательный, регулируемый, активный и пассивный обмен веществ с внешней средой.

3. Способна передавать и сохранять информации, а также принимает участие в процессе размножения.

4. Выполняет транспортную функцию, которая может через мембрану транспортировать вещества в клетку и из клетки.

5. Клеточная мембрана имеет одностороннюю проводимость. Благодаря этому, молекулы воды могут без задержек проходить через клеточную мембрану, а молекулы прочих веществ проникают выборочно.

6. С помощью клеточной мембраны происходит получение воды, кислорода и питательных веществ, а через неё удаляются продукты клеточного обмена.

7. Выполняет клеточный обмен через мембраны, и может исполнять их с помощью 3 главных типов реакций: пиноцитоз, фагоцитоз, экзоцитоз.

8. Мембрана обеспечивает специфику межклеточных контактов.

9. В мембране присутствуют многочисленные рецепторы, которые способны воспринимать химические сигналы — медиаторы, гормоны и множество других биологических активных веществ. Так она в силах изменить метаболическую активность клетки.

10. Основные свойства и функции клеточной мембраны:

  • Матричная
  • Барьерная
  • Транспортная
  • Энергетическая
  • Механическая
  • Ферментативная
  • Рецепторная
  • Защитная
  • Маркировочная
  • Биопотенциальная

Какую функцию выполняет в клетке плазматическая мембрана?

  1. Отграничивает содержимое клетки;
  2. Осуществляет поступление веществ в клетку;
  3. Обеспечивает удаление ряда веществ из клетки.

Структура мембраны клетки

Клеточные мембраны включают липиды 3 классов:

  • Гликолипиды;
  • Фосфолипиды;
  • Холестерол.

В основном мембрана клетки состоит из белков и липидов, и имеет толщину не более 11 нм. От 40 до 90% всех липидов составляют фосфолипиды. Также важно отметить гликолипиды, которые являются одним из основных компонентов мембраны.

Структура клеточной мембраны трехслойна. В центре располагается однородный жидкий билипидный слой, а белки закрывают его с двух сторон (как мозаику), отчасти проникая в толщу. Также белки необходимы для мембраны, чтобы пропускать внутрь клеток и транспортировать из них наружу особые вещества, которые не могут проникнуть через жировой слой. Например, ионы натрия и калия.

  • Это интересно —

Строение клетки — видео

Клеточная мембрана - это оболочка клетки, выполняющая следующие функции: разделение содержимого клетки и внешней среды, избирательный транспорт веществ (обмен с внешней для клетки средой), место протекания некоторых биохимических реакций, объединение клеток в ткани и рецепция.

Клеточные мембраны подразделяют на плазматические (внутриклеточные) и наружные. Основное свойство любой мембраны - полупроницаемость, то есть способность пропускать только определенные вещества. Это позволяет осуществлять избирательный обмен между клеткой и внешней средой или обмен между компартментами клетки.

Плазматические мембраны - это липопротеиновые структуры. Липиды спонтанно образуют бислой (двойной слой), а мембранные белки «плавают» в нем. В мембранах присутствует несколько тысяч различных белков: структурные, переносчики, ферменты и др. Между белковыми молекулами имеются поры, сквозь которые проходят гидрофильные вещества (непосредственному их проникновению в клетку мешает липидный бислой). К некоторым молекулам на поверхности мембраны присоединены гликозильные группы (моносахариды и полисахариды), которые участвуют в процессе распознавания клеток при образовании тканей.

Мембраны отличаются по своей толщине, обычно она составляет от 5 до 10 нм. Толщина определяется размерами молекулы амфифильного липида и составляет 5,3 нм. Дальнейшее увеличение толщины мембраны обусловлено размерами мембранных белковых комплексов. В зависимости от внешних условий (регулятором является холестерол) структура бислоя может изменяться так, что он становится более плотным или жидким - от этого зависит скорость перемещения веществ вдоль мембран.

К клеточным мембранам относят: плазмолемму, кариолемму, мембраны эндоплазматической сети, аппарата Гольджи, лизосом, пероксисом, митохондрий, включений и т. д.

Липиды не растворимы в воде (гидрофобность), но хорошо растворяются в органических растворителях и жирах (липофильность). Состав липидов в разных мембранах неодинаков. Например, плазматическая мембрана содержит много холестерина. Из липидов в мембране чаще всего встречаются фосфолипиды (глицерофосфатиды), сфингомиелины (сфинголипиды), гликолипиды и холестерин.

Фосфолипиды, сфингомиелины, гликолипиды состоят из двух функционально различных частей: гидрофобной неполярной, которая не несет зарядов - «хвосты», состоящие из жирных кислот, и гидрофильной, содержащей заряженные полярные «головки» - спиртовые группы (например, глицерин).

Гидрофобная часть молекулы обычно состоит из двух жирных кислот. Одна из кислот предельная, а вторая непредельная. Это определяет способность липидов самопроизвольно образовывать двухслойные (билипидные) мембранные структуры. Липиды мембран выполняют следующие функции: барьерную, транспортную, микроокружение белков, электрическое сопротивление мембраны.

Мембраны отличаются друг от друга набором белковых молекул. Многие мембранные белки состоят из участков, богатых полярными (несущими заряд) аминокислотами, и участков с неполярными аминокислотами (глицином, аланином, валином, лейцином). Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в «жирную» часть мембраны, где находятся гидрофобные участки липидов. Полярная (гидрофильная) же часть этих белков взаимодействует с головками липидов и обращена в сторону водной фазы.

Биологические мембраны обладают общими свойствами :

мембраны - замкнутые системы, которые не позволяют содержимому клетки и ее компартментов смешиваться. Нарушение целостности мембраны может привести к гибели клетки;

поверхностная (плоскостная, латеральная) подвижность. В мембранах идет непрерывное перемещение веществ по поверхности;

асимметрия мембраны. Строение наружного и поверхностного слоев химически, структурно и функционально неоднородно.

1 – полярная головка молекулы фосфолипида

2 – жирнокислотный хвост молекулы фосфолипида

3 – интегральный белок

4 – периферический белок

5 – полуинтегральный белок

6 – гликопротеин

7 - гликолипид

Наружная клеточная мембрана присуща всем клеткам (животным и растительным), имеет толщину около 7,5 (до 10) нм и состоит из молекул липидов и белка.

В настоящее время распространена жидкостно-мозаичная модель построения клеточной мембраны. Согласно этой модели молекулы липидов расположены в два слоя, причем своими водоотталкивающими концами (гидрофобными – жирорастворимыми) они обращены друг к другу, а водорастворимыми (гидрофильными) – к периферии. В липидный слой встроены белковые молекулы. Некоторые из них находятся на внешней или внутренней поверхности липидной части, другие – частично погружены или пронизывают мембрану насквозь.

Функции мембран:

Защитная, пограничная, барьерная;

Транспортная;

Рецепторная – осуществляется за счет белков – рецепторов, которые обладают избирательной способностью к определенным веществам (гормонам, антигенам и др.), вступают с ними в химические взаимодействия, проводят сигналы внутрь клетки;

Участвуют в образовании межклеточных контактов;

Обеспечивают движение некоторых клеток (амебовидное движение).

У животных клеток сверху наружной клеточной мембраны имеется тонкий слой гликокаликса. Это комплекс углеводов с липидами и углеводов с белками. Гликокаликс участвует в межклеточных взаимодействиях. Точно такое же строение имеют цитоплазматические мембраны большинства органелл клетки.

У растительных клеток снаружи от цитоплазматической мембраны. расположена клеточная стенка, состоящая из целлюлозы.

Транспорт веществ через цитоплазматическую мембрану.

Существуют два основных механизма для поступления веществ в клетку или выхода из клетки наружу:

1.Пассивный транспорт.

2.Активный транспорт.

Пассивный транспорт веществ происходит без затраты энергии. Примером такого транспорта является диффузия и осмос, при которых движение молекул или ионов осуществляется из области с высокой концентрацией в область с меньшей концентрацией, например, молекул воды.

Активный транспорт – при этом виде транспорта молекулы или ионы проникают через мембрану против градиента концентрации, для чего необходима энергия. Примером активного транспорта служит натрий-калиевый насос, который активно выкачивает натрий из клетки и поглощает ионы калия из внешней среды, перенося их в клетку. Насос – это особый белок мембраны, приводит его в движение АТФ.

Активный транспорт обеспечивает поддержание постоянства объема клетки и мембранного потенциала.

Транспорт веществ может осуществляться путем эндоцитоза и экзоцитоза.

Эндоцитоз – проникновение веществ в клетку, экзоцитоз – из клетки.

При эндоцитозе плазматическая мембрана образует впячивание или выросты, которые затем обволакивают вещество и отшнуровываясь, превращаются в пузырьки.

Различают два типа эндоцитоза:

1)фагоцитоз- поглощение твердых частиц (клетки фагоциты),

2)пиноцитоз – поглощение жидкого материала. Пиноцитоз характерен для амебоидных простейших.

Путем экзоцитоза различные вещества выводятся из клеток: из пищеварительных вакуолей удаляются непереваренные остатки пищи, из секреторных клеток выводится их жидкий секрет.

Цитоплазма – (цитоплазма + ядро образуют протоплазму). Цитоплазма состоит из водянистого основного вещества (цитоплазматический матрикс, гиалоплазма, цитозоль) и находящихся в нем разнообразных органелл и включений.

Включения– продукты жизнедеятельности клеток. Выделяют 3 группы включений – трофического, секреторного (клетки желез) и специального (пигмент) значения.

Органеллы – это постоянные структуры цитоплазмы, выполняющие в клетке определенные функции.

Выделяют органеллы общего значения и специальные. Специальные встречаются в большинстве клеток, но в значительном количестве присутствуют только в клетках, выполняющих определенную функцию. К ним относятся микроворсинки эпителиальных клеток кишечника, реснички эпителия трахеи и бронхов, жгутики, миофибриллы (обеспечивающие сокращение мышц и др.).

К органеллам общего значения относят ЭПС, комплекс Гольджи, митохондрии, рибосомы, лизосомы, центриоли клеточного центра, пероксисомы, микротрубочки, микрофиламенты. В растительных клетках – пластиды, вакуоли. Органеллы общего значения можно подразделить на органеллы, имеющие мембранное и немембранное строение.

Органеллы, имеющие мембранное строение бывают двумембранные и одномембранные. К двумембранным относят митохондрии и пластиды. К одномембранным – эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, вакуоли.

Органеллы, не имеющие мембран: рибосомы, клеточный центр, микротрубочки, микрофиламенты.

Митохондрии это органеллы округлой или овальной формы. Они состоят из двух мембран: внутренней и наружной. Внутренняя мембрана имеет выросты – кристы, которые разделяют митохондрию на отсеки. Отсеки заполнены веществом – матриксом. В матриксе содержатся ДНК, иРНК, тРНК, рибосомы, соли кальция и магния. Здесь происходит автономный биосинтез белка. Основной же функцией митохондрий является синтез энергии и накопления ее в молекулах АТФ. Новые митохондрии образуются в клетке в результате деления старых.

Пластиды органеллы, встречающиеся преимущественно в растительных клетках. Они бывают трех типов: хлоропласты, содержащие пигмент зеленого цвета; хромопласты (пигменты красного, желтого, оранжевого цвета); лейкопласты (бесцветные).

Хлоропласты благодаря зеленому пигменту хлорофиллу, способны синтезировать органические вещества из неорганических, используя энергию солнца.

Хромопласты придают яркую окраску цветам и плодам.

Лейкопласты способны накапливать запасные питательные вещества: крахмал, липиды, белки и др.

Эндоплазматическая сеть(ЭПС) представляет собой сложную систему вакуолей и каналов, которые ограничены мембранами. Различают гладкую (агранулярную) и шероховатую (гранулярную) ЭПС. Гладкая не имеет на своей мембране рибосом. В ней происходит синтез липидов, липопротеидов, накопление и выведение из клетки ядовитых веществ. Гранулярная ЭПС имеет рибосомы на мембранах, в которых синтезируются белки. Затем белки поступают в комплекс Гольджи, а оттуда наружу.

Комплекс Гольджи (аппарат Гольджи) представляет собой стопку уплощенных мембранных мешочков – цистерн и связанную с ними систему пузырьков. Стопка цистерн называется диктиосома.

Функции комплекса Гольджи: модификация белков, синтез полисахаридов, транспорт веществ, формирование клеточной мембраны, образование лизосом.

Лизосомы представляют собой окруженные мембраной пузырьки, содержащие ферменты. Они осуществляют внутриклеточное расщепление веществ и подразделяются на первичные и вторичные. Первичные лизосомы содержат ферменты в неактивной форме. После попадания в органеллы различных веществ происходит активация ферментов и начинается процесс переваривания – это вторичные лизосомы.

Пероксисомы имеют вид пузырьков, ограниченных одной мембраной. Они содержат ферменты, которые расщепляют токсичную для клеток перекись водорода.

Вакуоли это органеллы клеток растений, содержащие клеточный сок. В клеточном соке могут находиться запасные питательные вещества, пигменты, отходы жизнедеятельности. Вакуоли участвуют в создании тургорного давления, в регуляции водно – солевого обмена.

Рибосомы органеллы, состоящие из большой и малой субъединиц. Могут находиться или на ЭПС или же располагаться свободно в клетке, образуя полисомы. Они состоят из рРНК и белка и образуются в ядрышке. В рибосомах происходит биосинтез белка.

Клеточный центр встречается в клетках животных, грибов, низших растений и отсутствует у высших растений. Он состоит из двух центриолей и лучистой сферы. Центриоль имеет вид полого цилиндра, стенка которого состоит из 9 триплетов микротрубочек. При делении клетки образуют нити митотического веретена, обеспечивающие расхождение хроматид в анафазе митоза и гомологичных хромосом при мейозе.

Микротрубочки трубчатые образования различной длины. Входят в состав центриолей, митотического веретена, жгутиков, ресничек, выполняют опорную функцию, способствуют перемещению внутриклеточных структур.

Микрофиламенты нитчатые тонкие образования, расположенные по всей цитоплазме, но особенно много их под клеточной оболочкой. Вместе с микротрубочками образуют цитоскелет клетки, обусловливают ток цитоплазмы, внутриклеточные перемещения пузырьков, хлоропластов и др. органелл.

Эволюция клетки

Существуют два этапа в эволюции клетки:

1.Химический.

2.Биологический.

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).

Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии. Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад) двумя путями:

1)Путем симбиоза нескольких прокариотических клеток – это симбиотическая гипотеза;

2)Путем инвагинации клеточной мембраны. Суть инвагинационной гипотезы заключается в том, что прокариотическая клетка содержала несколько геномов, прикрепленных к клеточной оболочке. Затем происходила инвагинация – впячивание, отшнуровка клеточной мембраны, и эти геномы превращались в митохондрии, хлоропласты, ядро.

Дифференциация и специализация клеток.

Дифференциация – это формирование различных типов клеток и тканей в ходе развития многоклеточного организма. Одна из гипотез связывает дифференцировку с экспрессией генов в процессе индивидуального развития. Экспрессия – процесс включения тех или иных генов в работу, который создает условия для направленного синтеза веществ. Поэтому происходит развитие и специализация тканей в том или ином направлении.


Похожая информация.




Понравилась статья? Поделитесь ей
Наверх